

MOTHERHOOD UNIVERSITY, Roorkee

ENLIGHTENING WORLD

Doctor of Philosophy (Ph.D.) COURSE WORK SYLLABUS

BOTANY FACULTY OF SCIENCE

Implemented from June, 2024 onwards

Roorkee-Dehradun Road, Village: Karoundi Post: Bhagwanpur, Tehsil: Roorkee District: Haridwar, Uttarakhand -247661

July

Ph.D. COURSE WORK THEORY SYLLABUS BOTANY

Total Credits: 06

Max. Marks 100

Total Hours: 90

PROGRAM SPECIFIC OUTCOMES

After completion of course work

1. It will help to develop research aptitude for higher education and scientific research.

- 2. It willbe gaining practical knowledge implemented in the biodiversity assessment & conservation.
- 3. It will understand procedure for the basic concepts of intellectual property rights.

4. The knowledge will provide understanding of plant systematic & classification.

- 5. The study will help to understand cell structure, nucleic acids, organization of DNA in prokaryotes & Eukaryotes, DNA replication mechanism, genetic code and transcription process.
- 6. It will help to understand of reproduction and developmental changes in plants.
- 7. The detail study will help to understand of physiological and metabolic processes for plant growth and development.
- 8. The learning will provide understanding of plant systematic, developmental biology, ecology, statistics, physiology, biochemistry, anatomy, and plant genetics.
- 9. It will apply a significant range of advanced and specialized skills to act autonomously in the planning and implementation of plant science research.
- 10. After completing this course work successfully researcher will be able to contribute in the field of plant sciences.

UNIT I (10 Hrs)

Biodiversity: Introduction, estimation, distribution, significance, causes of depletion and conservation strategies; Biodiversity hot spots; Impact of climate change on biodiversity; Biodiversity and biotechnology relationship; Biopiracy and Intellectual property rights; Organizations involved in biodiversity conservation; Indian Biodiversity Act (2002).

UNIT II (15 Hrs)

Techniques in Field Botany: Plant identification: International code of Botanical Nomenclature: Salient features, important rules and recommendation; Identification keys; Herbarium Methodology: Collection, poisoning, drying and Preservation of herbarium specimens, Important National and International herbaria; Ethnobotanical survey techniques.

2 Judin

UNIT III (20 Hrs)

Molecular Biology: Role of engineering in stress tolerance, Kinds of molecular markers-Proteins markers and DNA markers, advantages, disadvantages & applications of molecular markers in the field of molecular biology. *Bacillus thuringenesis* endotoxin and their mode of action, Advantages of molecular markers in transgenic crops.

UNIT IV (15 Hrs)

Stress Physiology: Physiological Effects and Mechanism of action of Auxins, Gibberellins & Abscisic acid. Water deficit and its physiological consequences, drought tolerance mechanisms, salinity stress and plant responses, heat stress and heat shock proteins, pollution stress, biotic stress.

UNIT V (20 Hrs)

Enzyme Technology: Introduction to enzymes, specificity of enzyme action, kinetic and chemical mechanisms of enzyme – catalyzed reactions, enzyme inhibition, active site structure, enzyme assay, application of enzymatic analysis. Stability, Denaturation and Renaturation of enzymes & biosensors. Recent advances in enzyme technology.

UNIT VI (10 Hrs)

Bioinformatics: Biological Databases; Sequence alignment, phylogenetic analysis; Whole genome annotation taking examples of major plant genomes

References:

- Enzyme Technology by Martin Chaplin and Christopher Bucke (1990) Cambridge University Press.
- Biocatalysts and Enzyme Technology by Klaus Buchholz, Volker Kasche, Uwe Theo Bornscheuer (2005), 1 edition, Wiley-VCH.
- Enzyme Technology, edited by Ashok Pandey, Colin Webb and Carlos icardo Soccol(2006), Springer US.
- Introduction to plant physiology by W.G.Hopkins and NPA Huner, Wiley Int.3rd Ed. 2
- Old and Primrose (1984). Principles of gene manipulation. Blackwell.
- Patterson, 1996. Genome mapping in plants, Academic Press.330p.
- Molecular cloning A Laboratory Manual 3rd edition Vol. 1, 2, 3- Sambrook and Russell, Churchill press, 2007
- Principals and Techniques of Biochemistry and Molecular Biology, Edited by Keith Wilson and John Walker, Sixth Edition, Cambridge University Press.
- Weising, K. H. Nybom, K. Wolff, W. Meyere. 1995. DNA Fingerprinting. CRL Press
- Claverie, J.M. and Notredame C. 2003 Bioinformatics for Dummies. Wiley Editor. 2.
- Letovsky, S.I. 1999 Bioinformatics. Kluwer Academic Publishers.
- Baldi, P. and Brunak, S. 2001 Bioinformatics: The machine learning approach, The MIT Press.
- Setubal, J. and Meidanis, J. 1996 Introduction to Computational Molecular Biology. PWS Publishing Co., Boston.
- Lesk, A.M. 2005, 2nd edition, Introduction to Bioinformatics. Oxford University Press.

- Lesk, A.M. 2005, 2nd edition, Introduction to Bioinformatics. Oxford University Press.
- Fogel, G.B. and Corne, D.W., 1997 Evolutionary Computation in Bioinformatics.
- Rastogi et al 2003. Bioinformatics: Concepts, Skills and Applications. CBS.
- Rashidi and Buchler 2000. Bioinformatics Basics. CRC Press.
- Baldwin, B. G., D. H. Goldman, D. J. Keil, R. Patterson, T. J. Rosatti (eds). 2012. The Jepson Manual: Vascular Plants of California. Second Edition. Berkeley: University of California Press.
- Lightner, James. 2011. San Diego County Native Plants, 3rd edition. San Diego Flora, San Diego.
- Simpson, M. G. 2019. Plant Systematics. 3rd edition. Elsevier-Academic Press.
- Dale, Nancy. 1986. Flowering Plants: the Santa Monica Mountains, Coastal & Chaparral Regions of Southern California. Capra Press, Santa Barbara. In cooperation with California Native Plant Society.
- Ornduff, R. 1974. Introduction to California Plant Life. University of California Press, Berkeley.
- Jones, Jr. S.B. and Luchsinger, A.E. 1986. Plant Systematics. 2nd edition. McGraw-Hill Book Co., New York.
- Lawrence, G.H.M. 1951. Taxonomy of Vascular Plants. MacMillan, New York.
- Naik, V.N. 1984. Taxonomy of Angiosperms. Tata McGraw Hill, New Delhi.
- Singh, G. 2012. Plant Systematics: Theory and Practice. 3 rd edition. Oxford & IBH Pvt. Ltd., New Delhi
- Maheshwari, J.K. 1963. Flora of Delhi. CSIR, New Delhi.

Course Outcomes

After completion of course work, the researchers will be able

- > To understand of modern plant study.
- > To herbaria help to understand plant taxanomic of study.
- > To understanding of plant anatomy, embryology and cytogenetics..
- > To understanding of physiological effects & mechanism of plant hormones.
- > To understanding of internal structure of various plant parts, reproductive biology & genetics.
- > To understanding of plant systematic, ecology, physiology, anatomy, and plant genetics.
- > To understanding of conservation biology and reproduction biology.
- > To understanding of plant systematic & classification.
- > To understanding of enzyme & chemical mechanisms of enzyme catalyzed reactions.
- > To understanding of recent advances in enzyme technology.
- > To understanding of ethnobotanical survey techniques.
- > To understanding of biological databases, genome annotation & major plant genome.

ge 4